3
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Science of The Total Environment
Volume 773, 2021, 145632

Molecular analysis of microbial nitrogen transformation and removal potential in mangrove wetlands under anthropogenic nitrogen input

Yujie Daia,1, Xiaolan Lina,1, Yi Luoa, Jing Suna, Yun Tiana,b

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China.

Abstract

Mangrove ecosystems are natural nitrogen removal systems that are primarily mediated by nitrogen cycle microorganisms, but their relative contributions to nitrogen transformation and removal in mangrove sediments under anthropogenic nitrogen input needs further resolution and characterization. Here, we investigated the responses and the relative contributions of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), anaerobic ammonium oxidizing (anammox) bacteria and denitrifying bacteria after spiking urea into mangrove sediments incubated in a laboratory microcosm experiment for four weeks. During incubation, the diversity, abundances and transcription levels of the hzo genes for anammox bacteria, amoA genes for AOA and AOB, and nirS genes for denitrifying bacteria were monitored using targeted gene clone library analyses and quantitative PCR assays at the DNA and RNA levels. The results showed that mangrove sediments harbour habitat-specific anammox bacteria which related to Candidatus Scalindua and Candidatus Kuenenia clades. Mangrove specific AOA related to deep branched clades within Candidatus Nitrososphaera and Candidatus Nitrosotalea, and AOB related to Nitrosomonas and Nitrosospira were also detected in the collected sediment samples. Growth and activity of AOA were detected at all levels of amendment of nitrogen input, whereas AOB growth was detectable only at the high-level nitrogen input (1.5 mg urea per gram of dry sediment) with no amoA transcripts and lower abundance than AOA. The abundance and transcription levels of the nirS gene were higher (~1000 times) than those of the hzo gene in all groups. Pearson correlation analysis demonstrated that the abundance of both AOA and AOB amoA genes had a significant positive correlation with the nirS gene (p < 0.01). These results indicated that nitrification (primarily mediated by the AOA)-denitrification process played the most important role in nitrogen removal from the amendment of nitrogen short-term input in the mangrove sediments.

Keywords: Mangrove sediments, Nitrogen removal, Anammox bacteria, Ammonia-oxidizing archaea (AOA), Ammonia-oxidizing bacteria (AOB), Denitrifying bacteria.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution